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In our previous study, we proposed a new expression for the configurational energy of mixing taking into account
non-random mixing effect and chain-length dependence of the polymer. But our model can not predict lower
critical solution temperature (LCST) behaviours of liquid–liquid equilibria for binary polymer solutions.

In this study, we extend our previous model to describe LCST behaviours of binary polymer solutions by
employing a secondary lattice concept as a perturbation term to account for oriented interactions (or specific
interactions).q 1998 Elsevier Science Ltd. All rights reserved.
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INTRODUCTION

Many lattice models have been used to correlate the
thermodynamic properties of polymer solutions. The most
widely used and best known incompressible-lattice models
is the Flory–Huggins theory1–4which illustrates in a simple
way the competition between the entropy of mixing and the
attractive forces that produce liquid–liquid phase separation
at low temperatures with an upper critical solution
temperature (UCST)5. However, the Flory–Huggins model
cannot describe the lower critical solution temperature
(LCST)5 behaviour of polymer solutions. Phase equilibria in
this behaviour are influenced by strong, orientation-
dependent interaction forces, such as hydrogen bonds. The
Flory–Huggins model does not take into account deviations
from random mixing caused by these orientation-dependent
interactions. Many theoretical improvements, including
Guggenheim’s Quasi-chemical model6, have been obtained
by various workers to gain the mathematical solution of the
lattice model, including chain connectivity and non-random
mixing. In recent years, several authors have proposed
molecular-thermodynamic models for polymer solutions
that attempt to account for non-random mixing6–10. These
models are based on the local-composition concept
where expressions for local composition are obtained
either from essentially empirical relations or else are
derived from Guggenheim’s traditional quasi-chemical
approximation.

While an UCST is readily understood in terms of
intermolecular forces, interpretation of a LCST is more
difficult. Generally a LCST is observed when either of the
following conditions prevails:

(1) Large differences in thermal expansion of solvent and
solute: this situation is often encountered in polymer/
volatile–solvent systems when the system temperature
approaches the critical temperature of the solvent. As
the temperature rises, the solvent expands more rapidly
than the solute; solubility decreases until two separate

phases are formed. This behaviour is well described by
free-volume theories. Free volume theories for polymer
solutions were developed by numerous investigations,
notably by Flory3 and by Patterson and Delmas11.
These theories were based on a generalized form of
the van der Waals partition function, which is the
product of two independent partition functions: one
accounts for free volume and the other for attractive
forces. To account for compressibility and density
changes upon isothermal mixing, Sanchez and
Lacombe12–13 and Kleintjens and Koningsveld14 have
derived different forms of a lattice–fluid model based
on the Flory–Huggins lattice theory.

(2) Order-disorder transitions, as encountered in systems of
molecules capable of forming hydrogen bonds. More
than 50 years ago, Hirschfelderet al.15 suggested a
qualitative physical picture to explain the occurrence
of a LCST in hydrogen bonding systems: mutual solu-
bility at temperatures below the LCST is attributed to
highly orientation-dependent interactions (hydrogen
bonds) between unlike species, which are weaker than
those between like species, and so the system splits into
two phases. Specific forces between adjacent sites can
easily be introduced into the model to account for poly-
mers that hydrogen bond. Painteret al.16,17developed a
Gibbs free energy model for polymers that hydrogen
bond using chemical theory to account for the formation
of associated species and lattice theory to describe the
non-ideal interactions between the associated species.
Sanchez and Balazs18 used a lattice–fluid equation of
state to include specific interactions such as hydrogen
bonding. In this model, a quantitative description of the
spinodal phase diagram, as well as a semiquantitative
description of the composition and temperature depen-
dence of thex interaction parameter, is possible.
Recently, Huet al.19,20 reported a new model called
‘double-lattice model’ based on Freed’s lattice–cluster
theory21–28. In their model, ordinary polymer solutions
are described by the primary lattice, while a secondary
lattice is introduced as a perturbation to account for
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oriented interactions. Recently, Ohet al.29 modified a
double-lattice model by introducing new universal para-
meters and simplified the expression of the Helmholtz
energy of mixing.

In this study, we extend our previous model30,31 to
describe a LCST behaviour of polymer solutions. We
employ the secondary lattice concept from Huet al.’s
work19,20 as a perturbation to account for oriented
interactions.

MODEL DEVELOPMENT

Internal and Helmholtz energies of mixing
The description of the lattice model starts with a simple

cubic lattice (coordination number,z ¼ 6) containingNr

sites. The lattice is filled completely byN1 molecules of type
1, which occupy only one lattice site (r 1 ¼ 1), and N2

molecules of type 2, which occupyr 2 nearest-neighbour
lattice sites (r-mer). The energy of mixing is related to the
number of nearest-neighbour pairs by

DmixU
Nr «

¼
1
2

N12

Nr
(1)

where N12 is the total number of 1–2 pairs and« is the
interchange energy as defined by

« ¼ «11 þ «22 ¹ 2«12 (2)

where « ij is the i–j nearest-neighbour interaction energy.
The Helmholtz energy of mixing (DmixA) is obtained by
integrating the Gibbs–Helmholtz equation using the Gug-
genheim’s athermal entropy of mixing6 as a boundary con-
dition:
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A dimensionless temperature is defined byT̃ ¼ kT/«, where
T is an absolute temperature andk is a Boltzmann’s con-
stant.r i, f i, andv i are the number of segments per molecule,
volume fraction, and surface fraction of componenti,
respectively.f i andv i are defined by:

fi ¼
Niri

N1r1 þ N2r2
(5)

vi ¼
Niqi

N1q1 þ N2q2
(6)

whereqi is the surface area parameter defined as:

zqi ¼ ri(z¹ 2) þ 2 (7)

Correlation of simulation data
The fractional form to improve the mathematical

approximation defect and to correlate energy of mixing
data from Monte-Carlo simulation7 is given by

2DmixU
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¼ f1f2
B9
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� �
(8)

where
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ÿ �

¹ 1
� �

(9)

B9 ¼ b0 þ b1 exp 1=T̃
ÿ �

¹ 1
� �

(10)

wheref1 andf2 are monomer andr-mer volume fractions,
respectively. Parameters,A9 andB9, depend on the dimen-
sionless temperature only. Parametersa0, a1, b0, and b1

depend onr-mer chain length. The following equations
represent ther-mer dependence ofa0, a1, b0 andb1:

a0 ¼ 0:00012þ
0:22999(r2 ¹ 1)

1þ 1:37129(r2 ¹ 1)
(11)

a1 ¼ ¹ 0:01717þ
0:02160(r2 ¹ 1)

1þ 0:09642(r2 ¹ 1)
(12)

b0 ¼ 5:79880¹
1:45604(r2 ¹ 1)

1þ 1:83417(r2 ¹ 1)
(13)

b1 ¼ ¹ 1:42112¹
0:16059(r2 ¹ 1)

1¹ 1:34296(r2 ¹ 1)
(14)

These equations gain the parameters to larger values ofr 2

not simulated by smooth extrapolation. The determination
procedure for equations (11)–(14) is described elsewhere31.

A simple lattice model expression for predicting liquid–
liquid equilibria is given by
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B¼
(a1b0 ¹ a0b1)(2f2 ¹ 1) þ b1

1þ (a1 ¹ a0)(2f2 ¹ 1)
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b0 ¹ b1
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Specific interaction term
In Freed’s theory21–28, the Helmholtz energy of mixing

for the Ising model is given by

DA=NrkT¼ x1 ln x1 þ x2 ln x2 þ z«̃x1x2=2¹ z«̃2x2
1x2

2=4þ …
(17)

wherez is the coordination number andxi is the mole frac-
tion of componenti. To obtain an analytical expression of
the secondary lattice, Ohet al.29 defined new Helmholtz
energy of mixing as the fractional form to improve
the mathematical approximation defect and to reduce the
number of adjustable model parameters by revising
equation (17). Their expression is given by

DAsec, ij

Nij kT
¼

2
z

h ln hþ (1¹h)ln(1¹ h) þ
zC̀ d«̃ij (1¹ h)h

1þ C`d«̃ij (1¹ h)h

� �
(18)

where DAsec,ij is the Helmholtz energy of mixing for the
secondary lattice for ani–j segment–segment pair andNij

is the number ofi–j pairs.d«̃ is the reduced energy para-
meter contributed by the oriented interactions andh is the
surface fraction permitting oriented interactions. In general,
h is different for different components; for simplicity, we
arbitrarily seth to 0.3 as both Ohet al.29 and Huet al.19,20
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suggested previously.Ca is a universal constant determined
by comparing with Panagiotopolouset al.’s32 Gibbs–
Ensemble Monte-Carlo simulation data for the Ising lattice.
Ohet al.29 reported that the best fitting value ofCa obtained
from Monte-Carlo simulation results for the Ising lattice
was 0.4880785.

Incorporation of specific interaction term
The specific interaction contribution is a perturbation to

our proposed model. To incorporate a specific interaction
term, we replace« ij by « ij ¹ DAsec,ij/Nij . If oriented
interaction occurs in 1–2 segment–segment pairs, we
replace 1=«tidle by «/kT þ 2DAsec,12/N12kT in equation
(15). If oriented interaction occurs in 1–1 segment–segment
pairs and 2–2 segment–segment pairs, 1/T̃ is replaced by«/
kT ¹ DAsec,11/N11kT and«=kT¹ DAsec;22=N22kT, respectively.

Correlating equations
The critical condition is given by,
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The critical temperature and critical volume fraction are
obtained by solving the following two equations simul-
taneously:
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The coexistence curve is found from the following condi-
tions:

Dm19 ¼ Dm10 (23)

Dm29 ¼ Dm20 (24)

whereDm i is the change in chemical potential upon isother-
mally transferring componenti from the pure state to the
mixture. Superscripts9 and 0 denote two phases at equili-
brium. Relative to pure component 1, the chemical potential
Dm1 of component 1 in the solution is defined by,
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and a similar relation holds forDm2
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RESULTS AND DISCUSSION

For the systems of two different polymer chains or polymer/
solvent systems that interact strongly, they must be in the
proper orientation to each other. Our previous model could
not describe such behaviour (e.g. LCST). We employ a
secondary lattice concept to take into account the specific
interaction contribution to our previous model.

It is essential thatr 2, «/k and d«/k are adjustable model
parameters in order to compare calculated results with
experimental data.

Figure 1 shows phase diagrams of various molecular
weights of polystyrene (PS) in tert-butyl acetate33–35. As
shown inFigure 1, calculated curves agree very well with
experimental data. The model adjustable parameter values
arer 2 ¼ 288.31,«/k ¼ ¹ 588.50 K andd«12/k ¼ 4420.45 K
for PS (Mw ¼ 100 000,Mw/Mn ¼ 1.06);r 2 ¼ 895.90,«/k ¼
¹ 520.48 K andd«12/k ¼ 3766.60 K for PS (Mw ¼ 233 000,
Mw/Mn ¼ 1.06);r 2 ¼ 3096.02,«/k ¼ ¹ 458.07 K andd«12/
k ¼ 3219.00 K for PS (Mw ¼ 600 000,Mw/Mn ¼ 1.10).

Figure 2 shows coexistence curves for PS/ethyl acetate
(EA) systems33–35. The model adjustable parameter values
arer 2 ¼ 293.90,«/k ¼ ¹ 658.83 K andd«12/k ¼ 5131.29 K
for PS (Mw ¼ 100 000,Mw/Mn ¼ 1.06);r 2 ¼ 1155.79,«/k ¼
¹ 573.76 K andd«12/k ¼ 4204.50 K for PS (Mw ¼ 233 000,
Mw/Mn ¼ 1.06);r 2 ¼ 3701.21,«/k ¼ ¹ 499.79 K andd«12/
k ¼ 3519.97 K for PS (Mw ¼ 600 000,Mw/Mn ¼ 1.10). For
PS molecular weight of 100 000, there is a slight deviation
between theory and experimental data in high the
concentration range of PS. As shown inFigure 1 Figure
2, calculated values of«/k increase with molecular weight of
PS, whiled«/k decrease with molecular weight of PS.

Figure 3 shows phase diagrams of poly(methyl metha-
crylate) (PMMA)/EA systems36. The model adjustable
parameter values arer 2 ¼ 254.30,«/k ¼ ¹ 823.97 K and
d«12/k ¼ 7013.05 K for PMMA (Mw ¼ 37 100,Mw/Mn ¼
1.13); r 2 ¼ 2864.44,«/k ¼ ¹ 807.29 K andd«12/k ¼
6691.46 K for PMMA (Mw ¼ 92 800,Mw/Mn ¼ 2.0). For
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PMMA molecular weight of 92 800, ther 2 value is slightly
higher than that of our expected value. It may be due to the
polydispersity of PMMA. The same results are observed in

these systems as shown in both PS/tert-butyl acetate and PS/
EA systems.«/k increases with molecular weight of PMMA
andd«/k decreases with molecular weight of PMMA.

Figure 4 shows phase diagram of PS/methyl acetate
(MA) system33–35. The model adjustable parameter values
are r 2 ¼ 3993.83, «/k ¼ ¹ 514.04 K andd«12/k ¼
3694.20 K for PS (Mw ¼ 77 000,Mw/Mn ¼ 1.04). Though
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Figure 2 The coexistence curves for PS/EA systems. The triangles,
squares, and circles are experimental data34 for PS molecular weights of
600 000, 233 000 and 100 000, respectively. The solid lines are calculated
by equations (23) and (24)

Figure 1 The coexistence curves for PS/tert-butyl acetate systems. The
triangles, squares, and circles are experimental data34 for PS molecular
weights of 600 000, 233 000 and 100 000, respectively. The solid lines are
calculated by equations (23) and (24)

Figure 3 The coexistence curves for PMMA/EA systems. The squares
and circles are experimental data36 for PMMA molecular weights of 92 800
and 37 100, respectively. The solid lines are calculated by equations
(23) and (24)

Figure 4 The coexistence curve for PS/MA system. The circles are
experimental data34 for PS molecular weight of 77 000. The solid line is
calculated by equations (23) and (24)



there is little experimental data, our proposed model
describes well the phase behaviour of the system.

Figure 5 shows phase diagram of PS/acetone system11.
The model adjustable parameter values arer 2 ¼ 149.01,
«=k¼ ¹ 657:68 K and d«12/k ¼ 5012.44 K for PS (Mw ¼
4800). In this system, for the higher concentration range of
PS, there shows a slight deviation between theory and
experimental data.

In our proposed model, the energy parameters,«/k andd«/
k are less sensitive thanr 2 to the polymer molecular weights
on the shape of the coexistence curve.r 2 is the more
important parameter to determine the shape of a calculated
coexistence curve than the energy parameter. As shown in
Figures 1–3, r 2, «/k andd«/k vary with the molecular weight
of the polymer. The values of«/k andd«/k are dependent on
the critical solution temperature of a given system. As the
molecular weight of the polymer increases, the critical
solution temperature of the polymer solution shifts to the
lower temperature. Such a decrease in the critical solution
temperature may affect the values of«/k andd«/k. On the
other hand,r 2 is dependent on the critical concentration of
the polymer solution. The critical concentration of the
polymer solution is shifted to polymer poor phase with
increasing molecular weight of the polymer. Therefore,r 2

increases with increasing molecular weight of the polymer.
In this study, we considered polymer mixtures at

temperatures well below the solvent’s critical temperature
(Tc of tert-butyl acetate, EA, MA and acetone are 579 K,
523.3 K, 506.55 K and 508.1 K, respectively.). Therefore,
we expect that the free volume effect that leads to LCST, as
described by Patterson37, is almost negligible in our model
systems. Also, various flexibilities of chain molecules are
not considered in the proposed model. The model implicitly
assumes that PS (Figures 1, 2, 4 and 5) has the same
flexibility as that of PMMA (Figure 3). Further, solvent
molecules (tert-buthyl acetate inFigure 1, EA in Figure 2

andFigure 3, MA in Figure 4, and acetone inFigure 5) are
considered to be monomers where the concept of flexibility
does not apply. It is likely that the deficiency is basically
responsible for the discrepancy between the proposed model
and experimental results

CONCLUSION

We previously proposed a simplified and improved expression
for the Helmholtz energy of mixing for the monomer/r-mer
mixture that takes into account the non-random mixing
effect30 and polymer chain-length dependence31. In this
study, we employ a secondary lattice concept to take into
account the specific interactions contribution to our
previous model. We have shown several phase diagrams
of some binary polymer solutions showing LCST beha-
viours. Our new model predicts remarkably well phase
behaviours of polymer solutions with oriented interactions.
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